

The Royal High School

Numeracy Booklet

A guide for S1 and S2 pupils, parents and staff

Introduction

What is the purpose of the booklet?

This booklet has been produced to give guidance to pupils and staff on how certain common Numeracy topics are taught in mathematics and throughout the school. Staff from all departments have been consulted during its production. It is hoped that using a consistent approach across all subjects will make it easier for pupils to progress.

How can it be used?

The booklet includes the Numeracy skills useful in subjects other than mathematics. For help with mathematics topics, pupils should refer to their mathematics textbook or ask their teacher for help.

Why do some topics include more than one method?

In some cases (e.g. percentages), the method used will be dependent on the level of difficulty of the question, and whether or not a calculator is permitted.

For mental calculations, pupils should be encouraged to develop a variety of strategies so that they can select the most appropriate method in any given situation.

Table of Contents

TopicPage Number
Operators 4
Units 5
Mathematical Dictionary 6
Addition 8
Subtraction 9
Multiplication 10
Division 12
Order of Calculations (BODMAS) 13
Evaluating Formulae 14
Rounding 15
Estimation - Calculations 16
Time 17
Fractions 19
Percentages 21
Ratio 26
Proportion 29
Probability 30
Information Handling - Tables 31
Information Handling - Bar Graphs 32
Information Handling - Line Graphs 33
Information Handling - Scatter Graphs 34
Information Handling - Pie Charts 35
Information Handling - Averages 36

Operators

| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| 2 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 |
| 3 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 30 | 33 | 36 |
| 4 | 4 | 8 | 12 | 16 | 20 | 24 | 28 | 32 | 36 | 40 | 44 | 48 |
| 5 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 |
| 6 | 6 | 12 | 18 | 24 | 30 | 36 | 42 | 48 | 54 | 60 | 66 | 72 |
| 7 | 7 | 14 | 21 | 28 | 35 | 42 | 49 | 56 | 63 | 70 | 77 | 84 |
| 8 | 8 | 16 | 24 | 32 | 40 | 48 | 56 | 64 | 72 | 80 | 88 | 96 |
| 9 | 9 | 18 | 27 | 36 | 45 | 54 | 63 | 72 | 81 | 90 | 99 | 108 |
| 10 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | 110 | 120 |
| 11 | 11 | 22 | 33 | 44 | 55 | 66 | 77 | 88 | 99 | 110 | 121 | 132 |
| 12 | 12 | 24 | 36 | 48 | 60 | 72 | 84 | 96 | 108 | 120 | 132 | 144 |

Units

Mathematical Dictionary (Key words):

a.m.	(ante meridiem) Any time in the morning (between midnight and 12 noon).
Approximate	An estimated answer, often obtained by rounding to nearest 10,100 or decimal place.
Axis	A line along the base or edge of a graph. Plural - Axes
Calculate	Find the answer to a problem. It doesn't mean that you must use a calculator!
Compound Interest	Interest paid on the full balance of the account.
Data	A collection of information (may include facts, numbers or measurements).
Denominator	The bottom number in a fraction
Digit	A number
Discount	The amount an item is reduced by.
Equivalent fractions	Fractions which have the same value. Example $\frac{6}{12}$ and $\frac{1}{2}$ are equivalent fractions
Estimate	To make an approximate or rough answer, often by rounding.
Evaluate	To work out the answer.
Even	A number that is divisible by 2. Even numbers end with $0,2,4,6$ or 8 .
Factor	A number which divides exactly into another number, leaving no remainder. Example: The factors of 15 are $1,3,5,15$.
Frequency	How often something happens. In a set of data, the number of times a number or category occurs.
Greater than (>)	Is bigger or more than. Example: 10 is greater than 6 $10>6$
Gross Pay	Pay before deductions.
Histogram	A bar chart for continuous numerical values.
Increase	A value that has gone up.
Least	The lowest number in a group (minimum).
Less than (<)	Is smaller or lower than. Example: 15 is less than 21. $15<21$.

Mathematical Dictionary (Key words):

Maximum	The largest or highest number in a group.
Mean	The average of a set of numbers
Median	A type of average - the middle number of an ordered set of data (ordered from lowest to highest)
Minimum	The smallest or lowest number in a group.
Mode	Another type of average - the most frequent number or category
Multiple	A number which can be divided by a particular number, leaving no remainder. Example Some of the multiples of 4 are $8,16,48,72$ (the answers to the times tables)
Negative Number	A number less than zero. Shown by a negative sign. Example -5 is a negative number.
Net Pay	Pay after deductions.
Numerator	The top number in a fraction.
Odd Number	A number which is not divisible by 2 . Odd numbers end in $1,3,5,7$ or 9 .
Operations	The four basic operations are addition, subtraction, multiplication and division.
Order of operations	The order in which operations should be done. BODMAS
Per annum	Each year (annually).
Place value	The value of a digit dependent on its place in the number. Example: in the number 1573.4, the 5 has a place value of 100 .
p.m.	(post meridiem) Any time in the afternoon or evening (between 12 noon and midnight).
Prime Number	A prime number is a number that has exactly 2 factors (can only be divided by itself and 1). Note: 1 is not a prime number as it only has 1 factor.
Remainder	The amount left over when dividing a number.
Simple Interest	Interest paid only on an initial amount of money.
V.A.T.	Value Added Tax.

Addition

Mental strategies

Example Calculate $54+27$

Method 1 Add tens, then add units, then add together
$50+20=70$
$4+7=11$
$70+11=81$

Method 2 Split up number to be added into tens and units and add separately.
$54+20=74 \quad 74+7=81$

Method 3 Round up to nearest 10, then subtract

$$
54+30=84 \text { but } 30 \text { is } 3 \text { too much so subtract } 3 ;
$$

$$
84-3=81
$$

Written Method

When adding numbers, ensure that the numbers are lined up according to place value. Start at right hand side, write down units, carry tens.

Example Add 3032 and 589

Subtraction

Multiplication 1

Multiplication 2

Multiplying by multiples of 10 and 100

To multiply by 10 you move every digit one place to
 the left.
To multiply by 100 you move every digit two places to the left.
We do NOT just add a zero to the end of the number
Example 1 (a) Multiply 354 by 10
(b) Multiply 50.6 by 100

$354 \times 10=3540$
(c) 35×30

To multiply by 30 , multiply by 3 , then by 10 .
$35 \times 3=105$
$105 \times 10=1050$
so $35 \times 30=1050$

$50.6 \times 100=5060$
(d) 436×600

To multiply by 600 , multiply by 6 , then by 100 .
$436 \times 6=2616$
$2616 \times 100=261600$
so $436 \times 600=261600$

We may also use these rules for multiplying decimal numbers.

Example 2
(a) 2.36×20
(b) 38.4×50
$2.36 \times 2=4.72$
$38.4 \times 5=192.0$
$4.72 \times 10=47.2$
$192.0 \times 10=1920$
so
so
$2.36 \times 20=47.2$
$38.4 \times 50=1920$

Division

Example 1 There are 192 pupils in first year, shared equally between 8 classes. How many pupils are in each class?
$8 \longdiv { 1 9 ^ { 3 } 2 }$
There are 24 pupils in each class

Example 2 Divide 24 by 5

$$
5{\longdiv { 2 ^ { 2 } 4 }}^{4 r^{4}}
$$

Warning:
 $4 r 4$ is NOT the same as 4.4

When dividing a decimal number by a whole number, the decimal points must stay in line.

Example 4 A jug contains 2.2 litres of juice. If it is poured evenly into 8 glasses, how much juice is in each glass?

Where appropriate:
If you have a remainder at the end of a calculation, add a zero onto the end of the decimal and continue with the calculation.

Order of Calculation (BODMAS)

Consider this: What is the answer to $2+5 \times 8$?

Is it $7 \times 8=56$ or $2+40=42$?

The correct answer is 42.

Calculations which have more than one operation need to be done in a particular order. The order can be remembered by using the mnemonic BODMAS

The BODMAS rule tells us which operations should be done first. BODMAS represents:
(B)rackets
(O)f
(D)ivide
(M)ultiply
(A)dd
(S)ubract

Scientific calculators use this rule, some basic calculators may not, so take care in their use.

Example 1 $15-12 \div 6 \quad$ BODMAS tells us to divide firs \dagger

$$
=15-2
$$

$$
=13
$$

Example $2(9+5) \times 6$ BODMAS tells us to work out the
$=14 \times 6 \quad$ brackets first
$=84$

Example $3 \quad 18+6 \div(5-2) \quad$ Brackets firs \dagger
$=18+6 \div 3 \quad$ Then divide
$=18+2$ Now add

$$
=20
$$

Evaluating Formulae

To find the value of a variable in a formula, we must substitute all of the given values into the formula, then use BODMAS rules to work out the answer.

Example 1

Use the formula $P=2 L+2 B$ to evaluate P when $L=12$ and $B=7$.

$$
\begin{array}{ll}
P=2 L+2 B & \text { Step 1: write formula } \\
P=2 \times 12+2 \times 7 & \text { Step 2: substitute numbers for letters } \\
P=24+14 & \text { Step 3: start to evaluate (BODMAS) } \\
P=38 & \text { Step 4: write answer }
\end{array}
$$

Example 2

Use the formula $I=\frac{V}{R}$ to evaluate I when $V=240$ and $R=40$

$$
\begin{aligned}
& I=\frac{V}{R} \\
& I=\frac{240}{40} \\
& I=6
\end{aligned}
$$

Example 3

Use the formula $F=32+1.8 C$ to evaluate F when $C=20$

$$
\begin{aligned}
& F=32+1.8 C \\
& F=32+1.8 \times 20 \\
& F=32+36 \\
& F=68
\end{aligned}
$$

Rounding

Numbers can be rounded to give an approximation.

	2563									
2500	2510	2520	2530	2540	2550	2560	2570	2580	2590	2600

2563 rounded to the nearest 10 is 2560 .
2563 rounded to the nearest 100 is 2600 .
2563 rounded to the nearest 1000 is 3000 .

When rounding numbers which are exactly in the middle, convention is to round up.
7865 rounded to the nearest 10 is 7870 .

In general, to round a number, we must first identify the place value to which we want to round. We must then look at the next digit to the right (the "check digit") - if it is 5 or more round up.

Example 1 Round 1.54359 to 1 decimal place

The first number after the decimal point is a 5 - the check digit (the second number after the decimal point) is a 4, so leave the 5 as it is.

$$
\begin{aligned}
& 1.54359 \\
= & 1.5 \text { (to } 1 \text { decimal place) }
\end{aligned}
$$

Example 2 Round 4.78632 to 2 decimal places
The second number after the decimal point is an 8 - the check digit (the third number after the decimal point) is a 6 , so we round the 8 up to a 9
4.78632
$=4.79$

Estimation: Calculation

Example 1

The number of computers sold over 4 days was recorded in the table below. How many computers were sold in total?

Monday	Tuesday	Wednesday	Thursday
486	205	197	321

Estimate $=500+200+200+300=1200$

Calculate:
486
205
197
$+321$
1209 Answer $=1209$ computers

Example 2

A muesli bar weighs 42 g . There are 48 muesli bars in a box. What is the total weight of bars in the box?

Estimate $=50 \times 40=2000 \mathrm{~g}$
Calculate:

42
$\times 48$
336
1680
2016

Time

Time can be displayed in many different ways.

All these clocks show fifteen minutes past five, or quarter past five.

12 hour clock

When writing times in 12 hour clock, we need to add a.m. or p.m. after the time.
a.m. is used for times between midnight and 12 noon (morning) p.m. is used for times between 12 noon and midnight (afternoon / evening).

Time

In 24 hour clock:
The hours are written as numbers between 00 and
24
After 12 noon, the hours are numbered $13,14,15$..etc
Midnight is expressed as 0000
We do not use am or pm with 24 hour clock

24 hour clock

Examples
\(\left.$$
\begin{array}{lll}\begin{array}{l}12 \text { hour } \\
2: 16 \mathrm{am} \\
8: 55 \mathrm{am} \\
3: 35 \mathrm{pm} \\
8: 45 \mathrm{pm} \\
12: 20 \mathrm{am}\end{array} & \longrightarrow & \begin{array}{l}\text { 24 hour } \\
0216 \\
0\end{array}
$$

\hline\end{array}\right]\)| 1535 |
| :--- |
| 2045 |

Time Facts

$$
\begin{aligned}
& 60 \text { seconds } \longrightarrow 1 \text { minute } \\
& 60 \text { minutes } \longrightarrow 1 \text { hour } \\
& 24 \text { hours } \longrightarrow 1 \text { day }
\end{aligned}
$$

Time Facts

It is essential to know the number of months, weeks and days in a year, the number of days in each month.	
Time Facts	
The number of rhyme:	days in each month can be remembered using the " 30 days has September, April, June and November, All the rest have 31, Except February alone, Which has 28 days clear, And 29 in each leap year."

In 1 year, there are: 365 days (366 in a leap year) 52 weeks
12 months

Distance, Speed and Time.

For any given journey, the distance travelled depends on the speed and the time taken. If speed is constant, then the following formulae apply:

$$
\begin{array}{ll}
\text { Distance }=\text { Speed } \times \text { Time } & \text { or } D=S T \\
\text { Speed }=\frac{\text { Distance }}{\text { Time }} & \text { or } S=\frac{D}{T} \\
\text { Time }=\frac{\text { Distance }}{\text { Speed }} & \text { or } T=\frac{D}{S}
\end{array}
$$

Example

Calculate the speed of a train which travelled 450 km in 5 hours

$$
\begin{aligned}
& S=\frac{D}{T} \\
& S=\frac{450}{5} \\
& S=90 \mathrm{~km} / \mathrm{h} \\
& \text { [In science speed is referred to as velocity] }
\end{aligned}
$$

Fractions

Addition, subtraction, multiplication and division of fractions are studied in mathematics.
However, the examples below may be helpful in all subjects.

Understanding Fractions

Example

A necklace is made from black and white beads.

What fraction of the beads are black?

There are 3 black beads out of a total of 7 , so $\frac{3}{7}$ of the beads are black.

Equivalent Fractions

Example

What fraction of the flag is shaded?

6 out of 12 squares are shaded. So $\frac{6}{12}$ of the flag is shaded.
It could also be said that $\frac{1}{2}$ the flag is shaded.
$\frac{6}{12}$ and $\frac{1}{2}$ are equivalent fractions.

Fractions

Simplifying Fractions

The top of a fraction is called the numerator, the bottom is called the denominator.
To simplify a fraction, divide the numerator and denominator of the fraction by the same number.
numerator
Example 1
denominator
(a)

(b)

This can be done repeatedly until the numerator and denominator are the smallest possible numbers - the fraction is then said to be in its simplest form.

Example 2 Simplify $\frac{72}{84} \quad \frac{72}{84}=\underbrace{\frac{36}{42}}_{\div 2}=\underset{\sim 2}{\frac{18}{21}}=\frac{6}{7}$ (simplest form)

Calculating Fractions of a Quantity

To find the fraction of a quantity:
Divide by the denominator, multiply by the numerator.
[\div by bottom, x by top]

Example 1 Find $\frac{1}{5}$ of $£ 150$

$$
\begin{aligned}
\frac{1}{5} \text { of } £ 150 & =150 \div 5 \times 1 \\
& =£ 30
\end{aligned}
$$

Example 2 Find $\frac{3}{4}$ of 48

$$
\begin{aligned}
\frac{3}{4} \text { of } 48 & =48 \div 4 \times 3 \\
& =36
\end{aligned}
$$

Percentage Facts

Percent means out of 100.
A percentage can be converted to an equivalent fraction or decimal.
The symbol for percent is \%
36% means $\frac{36}{100}$
36% is therefore equivalent to $\frac{9}{25}$ and 0.36

Common Percentages

Some percentages are used very frequently. It is useful to know these as fractions and decimals.

Percentage	Fraction (in simplest form)	Decimal	
1%	$\frac{1}{100}$	0.01	
10%	$\frac{10}{100}=\frac{1}{10}$	0.1	
20%	$\frac{20}{100}=$	$\frac{1}{5}$	0.2
25%	$\frac{25}{100}$	$=$	$\frac{1}{4}$
50%	$\frac{50}{100}$	$=$	$\frac{1}{2}$
75%	$\frac{75}{100}$	$=$	$\frac{3}{4}$
100%		$\frac{100}{100}$	0.25

Finding a Percentage of a Quantity Non-Calculator

There are many ways to calculate percentages of a quantity. Some of the common ways are shown below.

Non- Calculator Methods
Method 1 Using Equivalent Fractions
Example Find 25% of $£ 640$

$$
\begin{aligned}
25 \% \text { of } £ 640 & =\frac{1}{4} \text { of } £ 640 \\
& =640 \div 4 \times 1 \\
& =£ 160
\end{aligned}
$$

Method 2 Using 1\%

In this method, first find 1% of the quantity (by dividing by 100), then multiply to give the required value.

Example Find 9% of 200 g

$$
\begin{aligned}
1 \% \text { of } 200 & =\frac{1}{100} \text { of } 200 \\
& =200 \div 100 \times 1 \\
& =2 \\
\text { so } 9 \% \text { of } 200 \mathrm{~g} & =9 \times 2=18 \mathrm{~g}
\end{aligned}
$$

Method 3 Using 10\%

This method is similar to the one above. First find 10\% (by dividing by 10), then multiply to give the required value.

Example Find 70\% of $£ 35$

$$
\begin{aligned}
10 \% \text { of } £ 35 & =\frac{1}{10} \text { of } 35 \\
& =35 \div 10 \times 1 \\
& =3.50 \\
\text { so } 70 \% \text { of } £ 35 & =7 \times 3.50=£ 24.50
\end{aligned}
$$

Finding a Percentage of a Quantity

Non- Calculator Methods (continued)

The previous 2 methods can be combined so as to calculate any percentage.

Example Find 23% of $£ 15000$

10% of $£ 15000$	$=1500$
so 20%	$=1500 \times 2$
	$=£ 3000$
1% of $£ 15000$	$=150$
so 3%	$=150 \times 3$
	$=£ 450$
23% of $£ 15000$	$=£ 3000+£ 450$
	$=£ 3450$

Finding VAT (without a calculator)
Value Added $\operatorname{Tax}(V A T)=15 \%$
To find VAT, firstly find 10\%

Example Calculate the total price of a computer which costs $£ 650$ excluding VAT

10% of $£ 650$	$=65 \quad$	(divide by 10)
5% of $£ 650$	$=32.50 \quad$ (divide previous answer by 2)	
so 15% of $£ 650$	$=65+32.50$	
	$=£ 97.50$	
Total price	$=650+97.50$	
	$=£ 747.50$	

Finding a Percentage of a Quantity Calculator Method

Calculator Method

To find the percentage of a quantity using a calculator, change the percentage to a fraction.

Example 1 Find 23\% of $£ 15000$

23% of 15000	$=\frac{23}{100} \times 15000$	or	$=0.23 \times 15000$
	$=15000 \div 100 \times 23$		$=£ 3450$
	$=£ 3450$		

We NEVER use the \% button on calculators. The methods taught in the mathematics department are all based on converting percentages to fractions.

Example 2 House prices increased by 19\% over a one year period. What is the new value of a house which was valued at $£ 236000$ at the start of the year?
$19 \%=\frac{19}{100}$ so
Increase

$$
\begin{array}{ll}
=\frac{19}{100} \times 236000 & \text { or } \\
=236000 \div 100 \times 19 & =0.19 \times 236000 \\
=44840 & =44840
\end{array}
$$

Value at end of year = original value + increase

$$
\begin{aligned}
& =236000+44840 \\
& =280840
\end{aligned}
$$

The new value of the house is $£ 280840$

Finding a Percentage

Finding the percentage

To find a percentage of a total:

1. make a fraction,
2. change to a decimal by dividing the top by the bottom.
3. multiply by 100 to make a \%

Example 1 There are 30 pupils in a class. 18 are girls.
What percentage of the class are girls?

$$
\begin{aligned}
\frac{18}{30} & =18 \div 30 \\
& =0.6 \\
& =0.6 \times 100 \\
& =60 \%
\end{aligned}
$$

60% of the class are girls
Example 2 James scored 36 out of 44 his biology test. What is his percentage mark?
Score $=\frac{36}{44}$
$=36 \div 44$
= 0.81818...
$=0.81818 \times 100$
$=81.818$.. \%
$=82 \%$ (to nearest whole number)
Example 3 In a class, 14 pupils had brown hair, 6 pupils had blonde hair, 3 had black hair and 2 had red hair. What percentage of the pupils were blonde?
Total number of pupils $=14+6+3+2=25$
6 out of 25 were blonde, so,
$\frac{6}{25}=6 \div 25$
$=0.24$
$=0.24 \times 100$
= 24%
24% of pupils were blonde.

Ratio 1

Writing Ratios

Example 1
To make a fruit drink:
4 parts water is mixed with 1 part of cordial.
The ratio of water to cordial is $4: 1$
(said "4 to 1")
The ratio of cordial to water is 1:4.
Order is important when writing ratios.

Example 2

In a bag of balloons, there are 5 red, 7 blue and 8 green balloons.

The ratio of red : blue : green is $5: 7: 8$

Simplifying Ratios

Ratios can be simplified in much the same way as fractions.

Example 1

Purple paint can be made by mixing 10 tins of blue paint with 6 tins of red. The ratio of blue to red can be written as $10: 6$

It can also be written as 5:3, each containing 5 tins of blue and 3 tins of red.

To simplify a ratio, divide each figure in the ratio by the highest common factor.

Ratio 2

Simplifying Ratios (continued)

Example 2

Simplify each ratio:
(a) $4: 6$
(b) $24: 36$
(c) 6:3:12
(a) $4: 6$
Divide each
figure by 2
(b) $24: 36$
$=2: 3$
Divide each
(c) 6:3:12
= 2:1:4

Divide each figure by 3

Example 3

Concrete is made by mixing 20 kg of sand with 4 kg cement. Write the ratio of sand : cement in its simplest form

$$
\text { Sand } \begin{aligned}
\text { Cement } & =20: 4 \\
& =5: 1
\end{aligned}
$$

Using ratios

The ratio of fruit to nuts in a chocolate bar is 3 : 2. If a bar contains 15 g of fruit, what weight of nuts will it contain?

Fruit	Nuts
$\times 5\left(\begin{array}{c}3 \\ 15\end{array}\right.$	$\left.\begin{array}{c}2 \\ 10\end{array}\right) \times 5$

So the chocolate bar will contain 10 g of nuts.

Ratio 3

Sharing in a given ratio

Example

Lauren and Sean earn money by washing cars. By the end of the day they have made £90. As Lauren did more of the work, they decide to share the profits in the ratio 3:2. How much money did each receive?

Step 1 Add up the numbers to find the total number of parts

$$
3+2=5
$$

Step 2 Divide the total by this number to find the value of each part

$$
90 \div 5=18
$$

Step 3 Multiply each figure by the value of each part
$3 \times 18=54$
$2 \times 18=36$

Step 4 Check that the total is correct
$54+36=90 \checkmark$

Lauren received £54 and Sean received £36

Proportion

When two quantities change in the same ratio, the quantities are said to be directly proportional.

It is often useful to make a table when solving problems involving proportion.

Example 1

A car factory produces 1500 cars in 30 days. How many cars would they produce in 90 days?

Days	Cars
$\times 3\left(\begin{array}{ll}30 & 1500 \\ 90 & 4500\end{array}\right) \times 3$	

The factory would produce 4500 cars in 90 days.

Example 2

5 adult tickets for the cinema cost $£ 27.50$. How much would 8 tickets cost?

The cost of 8 tickets is $£ 44$

Probability

A dice is rolled:

Example 1 What is the probability of rolling a 1 ?

$$
P(1)=\frac{1}{6}
$$

Example 2 What is the probability of rolling an even number?

3 even numbers

$$
P(\text { even })=\frac{3}{6}=\frac{1}{2}
$$

Example 3 What is the probability of rolling a number greater than 4?

2 numbers greater than 4 (5 and 6)
$P(>4)=\frac{2}{6}=\frac{1}{3}$

Information Handling : Tables

The average temperature in June in Barcelona is $24^{\circ} \mathrm{C}$

Frequency Tables are used to present information. Often data is grouped in intervals.

Example 2 Homework marks for Class 4B

$$
\begin{array}{lllllllllllllll}
27 & 30 & 23 & 24 & 22 & 35 & 24 & 33 & 38 & 43 & 18 & 29 & 28 & 28 & 27 \\
33 & 36 & 30 & 43 & 50 & 30 & 25 & 26 & 37 & 35 & 20 & 22 & 24 & 31 & 48
\end{array}
$$

Mark	Tally	Frequency		
$16-20$	II	2		
$21-25$	HI II	7		
$26-30$	HI \\|\|	9		
$31-35$	HI	5		
$36-40$	$\\|\\|$	3		
$41-45$	$\\|$	2		
$46-50$	$\\|$	2		

Each mark is recorded in the table by a tally mark.
Tally marks are grouped in 5's to make them easier to read and count.

Information Handling : Bar Graphs

Bar graphs are often used to display data. The horizontal axis should show the categories or class intervals, and the vertical axis the frequency. All graphs should have a title, and each axis must be labelled.

Example 1 The graph below shows the homework marks for Class 4B.

Example 2 How do pupils travel to school?

Information Handling : Line Graphs

Line graphs consist of a series of points which are plotted, then joined by a line. All graphs should have a title, and each axis must be labelled. The trend of a graph is a general description of it.

Example 1 The graph below shows Heather's weight over 14 weeks as she follows an exercise programme.

The trend of the graph is that her weight is decreasing.

Example 2 Graph of temperatures in Edinburgh and Barcelona.

Information Handling: Scatter Graphs

A scatter diagram is used to display the relationship between two variables.
A pattern may appear on the graph.
This is called a correlation.

Example The table below shows the height and arm span of a group of first year boys. This is then plotted as a series of points on the graph below.

Arm Span (cm)	150	157	155	142	153	143	140	145	144	150	148	160	150	156	136
Height (cm)	153	155	157	145	152	141	138	145	148	151	145	165	152	154	137

The graph shows a general trend, that as the arm span increases, so does the height. This graph shows a positive correlation.

The line drawn is called the line of best fit. This line can be used to provide estimates. For example, a boy of arm span 150 cm would be expected to have a height of around 151 cm .

Information Handling : Pie Charts

Example 30 pupils were asked the colour of their eyes. The results are shown in the pie chart below.

How many pupils had brown eyes?
The pie chart is divided up into ten parts, so pupils with brown eyes represent $\frac{2}{10}$ of the total. $\frac{2}{10}$ of $30=6$ so 6 pupils had brown eyes.

If no divisions are marked, we can work out the fraction by measuring the angle of each sector.

The angle in the brown sector is 72°. so the number of pupils with brown eyes
$=\frac{72}{360} \times 30=6$ pupils.

If you find a value for each sector, this should add up to 30 pupils.

Information Handling : Pie Charts 2

Drawing Pie Charts

Example: In a survey about television programmes, a group of people were asked what was their favourite soap. Their answers are given in the table below. Draw a pie chart to illustrate the information.

Soap	Number of people
Eastenders	28
Coronation Street	24
Emmerdale	10
Hollyoaks	12
None	6

Total number of people $=80$

Eastenders	$=\frac{28}{80} \rightarrow \frac{28}{80} \times 360^{\circ}=126^{\circ}$
Coronation Street	$=\frac{24}{80} \rightarrow \frac{24}{80} \times 360^{\circ}=108^{\circ}$
Emmerdale	$=\frac{10}{80} \rightarrow \frac{10}{80} \times 360^{\circ}=45^{\circ} \quad$Check that the total $=$ 360°
Hollyoaks	$=\frac{12}{80} \rightarrow \frac{12}{80} \times 360^{\circ}=54^{\circ}$

None

$$
=\frac{6}{80} \rightarrow \frac{6}{80} \times 360^{\circ}=27^{\circ}
$$

Information Handling : Averages

To provide information about a set of data, the average value may be given. There are 3 methods of finding the average value - the mean, the median and the mode.

Mean

The mean is found by adding all the data together and dividing by the number of values.

Median

The median is the middle value when all the data is written in numerical order from smallest to largest (if there are two middle values, the median is half-way between these values).

Mode

The mode is the value that occurs most often.

Range

The range of a set of data is a measure of spread.
Range $=$ Highest value - Lowest value

Example A class scored the following marks for their homework assignment. Find the mean, median, mode and range of the results.

$$
7, \quad 9, \quad 7,5, \quad 6, \quad 7,10, \quad 9, \quad 8,4,8,5,7,10
$$

$$
\begin{aligned}
\text { Mean } & =\frac{7+9+7+5+6+7+10+9+8+4+8+5+7+10}{14} \\
& =\frac{102}{14}=7.285 \ldots
\end{aligned}
$$

Mean $=7.3$ to 1 decimal place
Ordered values: $4,5,5,6,7,7,7,7,8,8,9,9,10,10$ Median = 7

7 is the most frequent mark, so Mode $=7$

Range $=10-4=6$

